[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, XAVIER UNIVERSITY]

Itaconic Acid Derivatives of Sulfanilamide

BY PETER L. PAYTASH, MALCOLM J. THOMPSON¹ AND MAURICE E. FYKES¹

Received October 12, 1951

Fusion of itaconic acid and sulfanilamides formed N⁴-itaconyl acid sulfanilamides rather than 1-(p-sulfamyl)-phenyl-5-oxo-3-pyrrolidinecarboxylic acid derivatives. Derivatives of 1-(p-sulfamyl)-phenyl-5-oxo-3-pyrrolidinecarboxylic acid were readily formed by condensing 1-(p-chlorosulfonyl)-phenyl-5-oxo-3-pyrrolidinecarboxylic acid with amines. N⁴-Itaconyl acid sulfanilamides are not intermediates in the formation of 1-(p-sulfamyl)-phenyl-5-oxo-3-pyrrolidinecarboxylic acid derivatives.

Reactions involving the condensation of primary amines with itaconic acid to give 1-(alkyl or aryl)-5-oxo-3-pyrrolidinecarboxylic acid derivatives were previously reported.² This investigation is a continuation of that work as applied to sulfanilamides.

Little success was attained by fusion of sulfanilamide with itaconic acid to give similar compounds. Fifty sulfanilamides were investigated by reaction (A) with only eleven giving the desired 1-(p-sulfamylphenyl)-5-oxo-3-pyrrolidine carboxylic acid derivatives (I). The yields were very poor except in the case of sulfanilamide² (74%) and sul-

faguanidine² (61%). However, the sulfanilamide derivatives could be synthesized readily by condensing 1-[p-(chlorosulfonyl)-phenyl]-5-oxo-3-pyrrolidine carboxylic acid with primary and secondary amines³ by reaction (B)

Their properties are given in Table I.

In the other cases, N⁴-itaconyl acid sulfanilamides (II) were formed by reaction (C). The forty derivatives thus obtained are listed in Table II. Only a short fusion time is required for the formation of these itaconyl derivatives, and in some cases longer fusion produces compounds of Type I as well as those of Type II in addition to a by-product of undetermined structure which also resulted from the fusion of substances of type II with itaconic acid.

Derivatives of type I could not be prepared from

the itaconyl derivatives II, nor could the reverse reaction be accomplished. Condensing of (II) with its corresponding sulfanilamide under varying conditions such as temperature, time and concentration did not form product (I).

In attempting to separate mixtures of derivatives (I) and (II) it was found that both types dissolved in sodium bicarbonate (pH 8.4) and were reprecipitated by acids; that recrystallization from different solvents was of no value; and that separation from solutions buffered from pH 0 to pH 6 also failed. However, they can be separated by acid or base hydrolysis: derivatives of type (II) produce itaconic acid and the corresponding sulfanilamide (insoluble in sodium bicarbonate) while derivatives of type (I) remain unchanged (soluble in sodium bicarbonate).

Experimental

Preparation of **Sulfanilamides**.—The sulfanilamides used in this investigation were synthesized according to methods found in the literature and verified for their authenticity by melting points.

The first of the first and vermed for their attrictive by melting points. **Reaction (A). Procedure.**—Five grams of itaconic acid (technical grade)⁴ (m.p. 165–171°) was heated to a temperature of about 180° (125-ml. erlenmeyer flask). To this was added, in one portion, two grams of the appropriate sulfanilamide. The mixture was heated to reflux stage (evidence of water in flask) for two to five minutes and cooled to room temperature. Forty ml. of 6 N sodium hydroxide⁵ was added and the mixture was refluxed for approximately two hours. It was then cooled to room temperature, acidified with dilute hydrochloric acid, made alkaline to litmus with solid sodium bicarbonate and the insoluble precipitate (original sulfanilamide) filtered off. The clear filtrate was purified with activated charcoal, finally precipitating any derivative (I) that may have formed when the solution was made acid to litmus with dilute hydrochloric acid. Further purification was attained by recrystallization from dilute alcohol, dilute acetic or dilute hydrochloric acid. The diazotization test was negative for all compounds prepared.

Reaction (B). Preparation of 1-[(*p*-Chlorosulfonyl)phenyl]-5-oxo-3-pyrrolidinecarboxylic Acid (IV).—Forty grams (0.2 mole)⁶ of purified⁶ 1-phenyl-5-oxo-3-pyrrolidine-

- (5) Acid hydrolysis (3 N hydrochloric acid) may be used instead.
- (6) The crude compound decomposes in chlorosulfonic acid.

⁽¹⁾ Excerpts from dissertations presented to the Graduate School of Xavier University in partial fulfillment of the requirements for the Degree of Master of Science.

⁽²⁾ P. L. Paytash, E. Sparrow and J. C. Gathe, THIS JOURNAL, 72, 1415 (1950).

⁽³⁾ We wish to express our gratitude to several industrial chemical companies for supplying the amines.

⁽⁴⁾ Supplied by Pfizer Company.

Amine	1-(p-Sulfamy1pheny1)-5-oxo-3- pyrrolidinecarboxy1ic acid derivative, R ₁	Yie1d,/ %	M.p., °C.	N, Calerl	% c Found	Neut. equiv. Found	Mol. Caled.	wt. d Found
Methylamine	Methyl	49	204 - 206	9.38	9.44	305	298	297
Dimethylamine	Methyl, ^b R ₂ Methyl ^b	70	220 - 223	8.96	8.97	307	312	
	· · · ·		237 - 239					
Ethylamine	Ethyl	46	198199	8.96	8.99	314	312	317
Diethylamine	Ethyl, R ₂ Ethyl	51	1 521 53	8.23	8.27	3 3 6	340	340
Isopropylamine	Isopropyl	81	190-191	8.55	8.55	3 30	326	
3-Methoxypropylamine	3-Methoxypropyl	37	104-106	7.82	7.84	3 90	356	
3-Isopropoxypropylamine	3-Isopropoxypropyl	60	105-107	7.21	7.27	382	3 8 5	381
<i>n</i> -Butylamine	n-Butyl	51	168-169	8.23	8.23	34 3	340	340
Di-n-butylamine	n-Butyl, ^b R ₂ n -Butyl ^b	48	74-76	7.06	7.04	3 96	3 96	
Cyclohexylamine	Cyclohexyl ^b	83	174-175	7.64	7.60	369	3 6 6	367
2,4,4-Trimethyl-2-aminopentane	2,4,4-Trimethyl-2-pentyl	75	1 8 5–186	7.06	7.03	394	396	394
3,5,5-Trimethylhexylamine	3,5,5-Trimethylhexyl	35	$156-157^{e}$	6.82	6.88	409	410	4 0 3
Aminoacetic acid	Carboxymethyl	35	190 - 192	8.18	8.24	172	342	• •
Aniline	Phenyl ^b	67	192 - 193	7.77	7.78	359	360	• •
Ethylaniline	Phenyl, R ₂ Ethyl	72	188189	7.21	7.18	388	38 8	• •
o-Chloroaniline	2-Chlorophenyl	57	166-168	-7.09	7.09		395	39 0
<i>m</i> -Chloroaniline	3-Chlorophenyl	85	209-210	-7.09	7.08		395	400
2,4-Dichloroaniline	2,4-Dichlorophenyl	75	$210 \cdot 211$	6.52	6.52		429	428
2,5-Dichloroaniline	2,5-Dichlorophenyl	65	104-106	6.52	6.52		429	433
<i>o</i> -Nitroaniline	2-Nitrophenyl	30	189-191	10.37	10.18	402	405	400
<i>m</i> -Nitroaniline	3-Nitrophenyl	85	233 - 235	10.37	10.20	400	405	406
<i>p</i> -Nitroaniline	4-Nitrophenyl	60	220 - 226 dec.	10.37	10.18	400	405	413
<i>o</i> -Toluidine	2-Tolyl	65	160-161	7.48	7.49	378	374	
<i>m</i> -Toluidine	3-Tolyl	68	178 - 179	7.48	7.57	378	374	379
<i>p</i> -Toluidine	4-Tolyl	41	150151	7.48	7.49	375	374	374
<i>m</i> -Nitro- <i>p</i> -toluidine	3-Nitro-4-tolyl	30	156 - 157	10.25	10.17	413	419	• •
Benzylamine	Benzy1 ^b	47	194 - 195	7.48	7.44	379	374	36 6
β -Phenethylamine	β -Phenethyl ^b	92	187-188	7.21	7.24	395	38 8	387
o-Anisidine	2-Methoxyphenyl ^b	77	182 - 183	7.17	7.25	391	3 90	390
<i>p</i> -Chloroanisidine	2-Methoxy-5-chlorophenyl	86	18 8-18 9	6.59	6.54	439	425	420
2,5-Dimethoxyaniline	2,5-Dimethoxyphenyl ^o	90	157 - 158	6.61	6.63	428	420	416
2,5-Diethoxyaniline	2,5-Diethoxyaniline	49	159 - 160	6.24	6.26	456	448	445
β -3,4-Dimethoxyphenethylamine	β-3,4-Dimethoxyphenethyl	68	114-115	6.24	6.19	449	448	• •
o-Aminodiphenyl	2-Diphenyl	50	199-200	6.41	6.39	437	437	445
<i>p</i> -Aminodiphenyl	4-Diphenyl	75	214 - 215	6.41	6.41	437	437	43 3
<i>p</i> -Phenylenediamine	1-p-(p-Sulfamylphenyl)-	8 0	280 dec.	8.70	8.61	326	643	• •
	phenyl-5-oxo-3-pyrrolidyl	carbo	xylic acid					
Benzidine	1-p-(p-Sulfamyldiphenyl)- phenyl-5-oxo-3-pyrrolidy	80 lcarbo	315–320 dec. xvlic acid	7.80	7.83	355	719	••
<i> </i>	Azobenzene	75	252-254	12.06	12.20	460	464	451
<i>l</i> -Naphthylamine	1-Naphthyl ^b		192-193	6.82	6.82	426	410	408
o-Aminobenzoic acid	2-Carboxyphenvl	18	218-220 dec.	6.92	6.87			
<i>m</i> -Aminobenzoic acid	3-Carboxyphenyl	24	228-230	6.92	6.92			
p-Aminobenzoic acid	4-Carboxyphenyl	30	245 dec.	6.92	6.90	• •		• •

TABLE I^a

^a R₁ 4-chlorophenyl, R₁ 4-methoxyphenyl, R₁ β -naphthyl, R₁ 2-pyridyl, R₁ pyrimidyl and R₁ 2-thiazolyl derivatives could not be confirmed due to the lack of sufficient analytical data or unsuccessful synthesis. ^b Also prepared by reaction (A) with poor yields. ^c Gunning, Arnold and Dyer modified Kjeldahl method. H. C. Sherman, *Methods of Organic Analysis*, 291 (1931). Nitro and azo compounds were first reduced with salicylic acid and sodium thiosulfate. ^d Rast camphor method. ^e Melting point of mixture with the corresponding N⁴-itaconyl acid sulfanilamide gave a strong depression. [/] Two or more recrystallizations.

carboxylic acid was added slowly with stirring to 150 g. (1.0 mole) of chlorosulfonic acid at a temperature of $60-65^{\circ}$. The temperature was kept between $65-70^{\circ}$ with stirring until the evolution of hydrogen chloride had ceased (15-20 minutes). The sirupy liquid, cooled to room temperature, was poured slowly with stirring into large excess of crushed ice to precipitate (IV). (IV) was filtered by suction and washed well with cold water. The crude yield was 45-50 g. (76-85%). Melting point of purified compound was $164-166^{\circ}$ (from benzene).

Anal. Calcd. for $C_{11}H_{10}CINO_5S$: N, 4.60. Found: N, 4.58.

Preparation of 1-(p-Sulfamyl)-phenyl-5-oxo-3-pyrrolidinecarboxylic Acid Derivatives (I).—The crude compound (IV) was condensed with primary and secondary amines (mole ratio of 1-1.5) by bringing about the reaction in an alkaline medium (sodium bicarbonate) or acetone. Some of the reactions proceeded better in one solvent than the other depending upon the solubility of the amines. At room temperature, completion of the reactions in alkaline medium took from a few hours to standing overnight while in acetone it took one-quarter to three hours. In most cases, condensation of (IV) with amines produced a gummy product which gave upon successive recrystallization from water, dilute alcohol, or dilute hydrochloric acid a purified crystalline substance.

Reaction (C). Procedure.—Ten grams of itaconic acid (technical grade) was heated to a temperature of about 180° (125-ml. erlenmeyer flask). To this was added in one por-

TABLE II^a

Sulfanilamide	N4-Itaconyl acid ^d sulfanilamide, R:	Vield,° %	М.р., °С.	N Calcd.	, % Found
Sulfanilamide	H. R ₂ . H	5	198-199	9.86	9.83
Sulfanilylmethylamine	Methyl ^b	31	188-189	9.38	9.40
Sulfanilylethylamine	Ethyl	23	18 5- 186	8.96	8.93
Sulfanilyldiethylamine	Ethyl, R ₂ Ethyl	40	156 - 157	8.23	8.20
Sulfanilylisopropylamine	Isopropyl	53	210-211	8.55	8.45
Sulfanily1-3-methoxypropylamine	3-Methoxypropyl	7	168 - 169	7.82	7.80
Sulfanily1-3-isopropoxypropylamine	3-Isopropoxypropyl	36	174-175	7.21	7.25
Sulfanilyl-n-butylamine	n-Butyl	60	183-184	8.23	8.22
Sulfanilyl-di-n-butylamine	n-Butyl, R ₂ n-Butyl	40	120-122	7.06	7.10
Sulfanilylcyclohexylamine	Cyclohexyl	40	184-185	7.64	7.62
Sulfanily1-2,4,4-trimethy1-2-aminopentane	2.4.4-Trimethyl-2-pentyl	29	163-164	7.06	7.04
Sulfanily1-3.5.5-trimethylhexylamine	3.5.5-Trimethylhexyl	10	156-157	6.82	6.86
Sulfanilylaniline	Phenyl	15	179–180 ′	7.77	7.80
-	·		183184		
Sulfanilylethylaniline	Phenyl, R ₂ Ethyl	29	148-149	7.21	7.20
Sulfanily1-o-chloroaniline	2-Chlorophenyl	37	197-198	7.09	7.12
Sulfanilyl-m-chloroaniline	3-Chlorophenyl	36	184-185	7.09	7.05
Sulfanily1-p-chloroaniline	4-Chlorophenyl	36	208-209	7.09	7.19
Sulfanily1-2.4-dichloroaniline	2.4-Dichlorophenyl	37	189-190	6.52	6.40
Sulfanilyl-2,5-dichloroaniline	2.5-Dichlorophenyl	41	177-178	6.52	6.35
Sulfanily1- <i>a</i> -nitroaniline	2-Nitrophenyl	2	175-176*	10.37	10.18
Sulfanily1-m-nitroaniline	3-Nitrophenyl	1	179-180	10.37	10.25
Sulfanilyl-p-nitroaniline	4-Nitrophenyl	3	210-211	10.37	10.15
Sulfanily1- <i>o</i> -toluidine	2-Tolvl	31	184-185	7.48	7.50
Sulfanily1-m-toluidine	3-Tolvl	30	189-190	7.48	7.45
Sulfanily1-p-toluidine	4-Tolv1	53	213-214	7.48	7.47
Sulfanily1-m-nitro-p-toluidine	3-Nitro-4-tolvl	4	162 - 163	10.25	10.00
Sulfanilylbenzylamine	Benzvl	20	186-188 dec.	7.48	7.50
Sulfanilyl-8-phenethylamine	B-Phenethyl	57	180-181	7.21	7.23
Sulfanily1-o-anisidine	2-Methoxyphenyl	4	163-165 dec.	7.17	7.17
Sulfanily1- <i>p</i> -anisidine	4-Methoxyphenyl	35	193-194	7.17	7.20
Sulfanilylchloroanisidine	2-Methoxy-5-chlorophenyl	37	172-173	6.59	6.50
Sulfanilyl-2.5-dimethoxyaniline	2.5-Dimethoxyphenyl	8	82-83	6.61	6.60
Sulfanilyl-2.5-diethoxyaniline	2.5-Diethoxyphenyl	10	167-168	6.24	6.20
Sulfanily β -3.4-dimethoxyphenethylamine	β -3.4-Dimethoxyphenethyl ^g	7	157-158	6.24	6.18
Sulfanilyl-o-aminodiphenyl	2-Diphenvl	15	191-192	6.41	6.45
Sulfanilyl-p-aminodiphenyl	4-Diphenyl	20	217-218	6.41	6.50
Bis-(sulfauily1)-p-phenylenediamine	Bis-(N ⁴ -itaconyl acid sulfanilyl)-p-	15	207-208	8.70	8.65
() , F F ,	phenylenediamine				
Sulfanily-1-naphthylamine	1-Naphthyl ^{g,h}	35	175-176'	6.82	6.75
			180–182 dec.		
Sulfanilyl-2-naphthylamine	2-Naphthyl ^{ø,h}	30	181-183	6.82	6.80
Sulfanilyl-o-aminobenzoic acid	2-Carboxyphenyl	25	133-135	6.92	6.90
Sulfanilyl- <i>m</i> -aminobenzoic acid	3-Carboxyphenyl	40^{-2}	195-196	6.92	7.00
Sulfanilyl-p-aminobenzoic acid	4-Carboxyphenyl	54	225-226 dec.	6.92	6.85
v · £ · · · · · · · · · · · · · · · · ·					

• (R₁ methyl and R₂ methyl), R₁ carboxymethyl, R₁ azobenzene, R₁ 2-thiazolyl, R₁ guanyl, R₁ 2-pyrimidyl and R₁ 2pyridyl derivatives could not be confirmed due to the lack of sufficient analytical data or unsuccessful synthesis. ^b See (b) Table I. ^c Two or more recrystallizations. ^d All N⁴-itaconyl acid sulfanilamide compounds listed gave itaconic acid and the original sulfanilamide upon hydrolysis. ^e If reprecipitated from basic solution by dilute acid, the melting point is 154-155°. Melting point of mixture gave no depression. ^f Gave two melting points. Melting point of mixture produced no depression. ^e 3 N sodium hydroxide was used in hydrolysis to isolate original sulfanilamide. ^b Became brown after standing a few days. ⁱ Melting point was 236-237° with rapid heating.

tion two grams of the appropriate sulfanilanide. When necessary heat was applied to maintain a molten state for 15 to 30 seconds.⁷ Then this molten mass was immediately poured into cold water with stirring and the reaction mixture was allowed to stand for a while before the precipitate formed was redissolved by making the solution alka-

(7) Optimum fusion time for each reaction was not determined. Prolonged fusion may contaminate derivative (II) with (I) and with a by-product of undetermined structure. This substance is insoluble in a sodium bicarbonate solution but dissolves slowly in sodium hydroxide (3-6 N) forming a deep red solution which gradually turns yellow or orange. The solution after standing a few minutes gives a positive diazotization test. Both acidic and basic hydrolysis form itaconic acid and the corresponding sulfanilamide. line to litmus with solid sodium bicarbonate. The resulting solution was allowed to stand, any insoluble material⁸ was filtered off, and the clear filtrate decolorized with activated charcoal. Finally derivative (II) was reprecipitated by making the solution acid to litmus with dilute hydrochloric acid. Further purification was attained by recrystallization from water or dilute alcohol. Diazotization test was negative for all compounds prepared.

tion from water or dilute alcohol. Diazotization test was negative for all compounds prepared. Hydrolysis of N⁴-Itaconyl Acid Sulfanilamide (II).—All of the derivatives prepared were subjected to acid hydrolysis (hydrochloric acid) for 30 minutes. From each hydrolysis itaconic acid and the original sulfanilamide were isolated.⁹

(8) Unreacted sulfanilamide or unknown product (III).

(9) Verified by mixed melting points.

Diazotization Test.—A solution of one gram of β -maphthol dissolved in 25 ml. of 3 N sodium hydroxide was prepared. A small amount of sample to be tested was dissolved in 1 N sodium hydroxide and a little solid sodium nitrite added. To this solution was added an excess of dilute hydrochloric acid and then poured into a few ml. of alkaline β -maphthol. Positive test was characterized by formation of azure-red color; negative, yellow or brown color. This test was

used throughout our work to confirm the conjugation of free amino groups.

Acknowledgment.—The authors wish to express their gratitude to Research Corporation for their grant in support of this investigation.

NEW ORLEANS, LOUISIANA

[CONTRIBUTION FROM NORTH TEXAS STATE COLLEGE]

Reductions of 1-(4-Nitrophenacyl)-4-(1-hexyl)-pyridinium Bromide

By PRICE TRUITT, BOB HALL¹ AND BENNIE ARNWINE¹

Received April 8, 1952

The synthesis and reduction of 1-(4-nitrophenacyl)-4-(1-hexyl)-pyridinium bromide are reported. The catalytic hydrogenation of this compound occurs stepwise. The rates of hydrogenation with Adams catalyst indicate the pyridinium function is reduced first followed by the nitro group. The reverse order of reduction was noted with Raney nickel. The carbonyl group was not reduced under the conditions reported. The structures of these compounds have been proved by alternate syntheses.

The catalytic reduction of 1-phenacylpyridinium bromide at low temperature and low pressure in the presence of platinum gives 1-phenacylpiperidine hydrobromide.² Riegel and Wittcoff³ were able to reduce preferentially the carbonyl group of this ketone at low temperature and high pressure (80 atmospheres) with Adams catalyst. However, they found⁴ that this preferential hydrogenation was often impossible to accomplish when the benzene ring of the pyridinium ketone was substituted with hydroxyl groups. Truitt and co-workers $^{\rm 5}$ have found that substituents on the pyridine nucleus influence the catalytic hydrogenation of 1-phenacylpyridinium halides at low temperature and low pressure. A methyl or an ethyl group on the pyridinium portion of the molecule gave the corresponding 1-phenacyl-4-alkylpiperidine salt. However, when the alkyl group was C_5 , C_6 , C_8 or C_9 and in the 4-position of the pyridine ring the only reduction product which could be isolated was a 4-alkyl-1-(2-hydroxy-2-phenylethyl)piperidine hydrohalide. This type compound resulted from the reduction of both reducible functions of the parent compound. It was impossible to isolate a product from these reductions where only one of the unsaturated groups had been reduced. The benzene ring was not altered under these conditions.

Our interest in compounds of this type for physiological studies necessitated our knowledge of the course of reduction of certain 1-(4-nitrophenacyl)-4alkylpyridinium bromides. Since we were most interested in compounds in which the 4-alkyl group was rather large, we selected 1-(4-nitrophenacyl)-4-(1-hexyl)-pyridinium bromide for the present investigation.

The catalytic reduction of 1-(4-nitrophenyl)-4-(1-hexyl)-pyridinium bromide in the presence of

- (3) B. Riegel and H. Wittcoff, THIS JOURNAL, 68, 1805 (1946).
- (4) B. Riegel and H. Wittcoff, ibid., 68, 1913 (1946).

(5) Price Truitt, B. Bryant, W. E. Goode and B. Arnwine, *ibid.*, 74, 2179 (1952).

Raney nickel at 50 p.s.i. and at room temperature proceeded stepwise as

Compounds II and III were isolatable from this hydrogenation, but compound II predominated. Raney nickel would not catalyze the reduction of the carbonyl group under these conditions and the entire hydrogenation was very slow. Reduction of I with Adams catalyst at room temperature and 50 p.s.i. of hydrogen behaved very differently. The first three moles of hydrogen was absorbed very rapidly (about 5–15 minutes for a 10-g. sample of I) while several hours were required for the absorption of an additional three moles of hydrogen. No additional hydrogen was taken up even with prolonged shaking. Compound III was the main product, but a small amount of II could be isolated. They were easily separated by alcohol recrystallization.

The structures of compounds II and III were determined with certainty by alternate modes of preparation and by study of their infrared spectra. Compounds I, II and III showed characteristic ketone absorption in the region of 6.2μ . The synthetic approaches to the reduction products are

⁽¹⁾ Parke, Davis and Company Research Fellows.

⁽²⁾ F. Krohnke with K. Fasold, Ber., 67, 656 (1934)